The connection between computability of a nonlinear problem and its linearization: The Hartman-Grobman theorem revisited
نویسندگان
چکیده
As one of the seven open problems in the addendum to their 1989 book Computability in Analysis and Physics [21], Pour-El and Richards asked, “What is the connection between the computability of the original nonlinear operator and the linear operator which results from it?” Yet at present, systematic studies of the issues raised by this question seem to be missing from the literature. In this paper, we study one problem in this direction: the Hartman-Grobman linearization theorem for ordinary differential equations (ODEs). We prove, roughly speaking, that near a hyperbolic equilibrium point x0 of a nonlinear ODE ẋ = f(x), there is a computable homeomorphism H such that H ◦ φ = L ◦ H, where φ is the solution to the ODE and L is the solution to its linearization ẋ = Df(x0)x.
منابع مشابه
Fractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کاملThe Hartman-Grobman Theorem
The Hartman–Grobman Theorem (see [3, page 353]) was proved by Philip Hartman in 1960 [5]. It had been announced byGrobman in 1959 [1], likely unbeknownst to Hartman, and Grobmanpublished his proof in 1962 [2], likely without knowing of Hartman’s work. (Grobman attributes the question to Nemycki and an earlier partial result to R.M. Minc (citing Nauč. Dokl. Vysš. Školy. Fiz.-Mat. Nauki 1 (1958))...
متن کاملAn Undergraduate’s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems
The Hartman-Grobman and Poincaré-Bendixon Theorems are two of the most powerful tools used in dynamical systems. The Hartman-Grobman theorem allows us to represent the local phase portrait about certain types of equilibria in a nonlinear system by a similar, simpler linear system that we can find by computing the system’s Jacobian matrix at the equilibrium point. The Poincaré-Bendixon theorem g...
متن کاملOn the Grobman-hartman Theorem in Α-hölder Class for Banach Spaces
We consider a hyperbolic diffeomorphism in a Banach space with a hyperbolic fixed point 0 and a linear part Λ. We define σ(Λ) ∈ (0, 1], and prove that for any α < σ(Λ) the diffeomorphism admits local α-Hölder linearization.
متن کاملAdaptive Input-Output Linearization Control of pH Processes
pH control is a challenging problem due to its highly nonlinear nature. In this paper the performances of two different adaptive global linearizing controllers (GLC) are compared. Least squares technique has been used for identifying the titration curve. The first controller is a standard GLC based on material balances of each species. For implementation of this controller a nonlinear state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 457 شماره
صفحات -
تاریخ انتشار 2012